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Abstract: Low energy effective actions arising from string theory typically contain many

scalar fields, some with a very complicated potential and others with no potential at all. The

evolution of these scalars is of great interest. Their late time values have a direct impact on

low energy observables, while their early universe dynamics can potentially source inflation

or adversely affect big bang nucleosynthesis. Recently, classical and quantum methods

for fixing the values of these scalars have been introduced. The purpose of this work is

to explore moduli dynamics in light of these stabilization mechanisms. In particular, we

explore a truncated low energy effective action that models the neighborhood of special

points (or more generally loci) in moduli space, such as conifold points, where extra massless

degrees of freedom arise. We find that the dynamics has a surprisingly rich structure —

including the appearance of chaos — and we find a viable mechanism for trapping some of

the moduli.
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1. Introduction

One important obstacle to the construction of realistic models of string phenomenology is

the generic existence of moduli in the low energy theory [1 – 6]. The compact manifolds

satisfying the string equations of motion generally come in continuous families whose pa-

rameters (controlling deformations of the metric and p-form fields) become scalar fields

with exactly flat potentials in the 4 dimensional effective theory. If on-shell branes are

present, there are also moduli that parametrize their relative positions and orientations.

Additionally, irrespective of the compact manifold, low energy string models always contain

the massless dilaton.

These fields can cause a number of tensions with observation. For example, their

presence in the early universe can modify the abundances of hydrogen and helium, a well

confirmed prediction of big bang nucleosynthesis [7]. If there are exactly massless fields at

late times, thermal and quantum fluctuations can cause time variation of standard model

parameters and 5th force type violations of the equivalence principle [8 – 10]. On the other

hand, fields with relatively flat potentials can be useful in building models of slow-roll

inflation. For these reasons it is important to explore the variety of moduli space dynamics

as fully as possible.

Proposals to mitigate the phenomenological issues mentioned above typically involve

either the introduction of a potential for the moduli fields [12 – 17], or suppression of their

couplings to matter [18 – 20]. An example of the former strategy that has generated much
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interest recently is to imagine the universe settling into a vacuum with nontrivial flux

threading cycles in the compact extra dimensions [11, 12]. This induces a potential on the

moduli space [12, 13] with a great number of apparently consistent vacuum solutions [21,

22]: perhaps an infinite number [23], or perhaps merely 10∼300 [24].1 In light of statistical

analyses of this ‘landscape’ that find large numbers (but small compared with the total

number of vacua) with small positive cosmological constant, some have reconsidered the

anthropic framework to explain details of our particular universe [21, 26] that have resisted

more traditional approaches.

Moduli space dynamics enter the discussion in two qualitatively different ways. Some

approaches are aimed at avoiding anthropic reasoning through dynamical selection, while

others seek to bolster the anthropic approach by providing an underlying mechanism to

populate a vast arena of possible universes. An example of the former strategy is the

attempts to find a wavefunction on the moduli space [27, 28], whose square might be

interpreted as a dynamical weight on the landscape. An example of the latter is the

application in [21] of results on semiclassical tunneling [29] to the case of transitions between

flux vacua with different cosmological constants.

It was suggested in [30, 31] that instead the problem lies with expanding about a single

minimum of the flux potential and that the actual ground state is a relaxed superposition

of all of the degenerate connected minima.

The approach we take here is to study moduli dynamics directly in the low energy

effective field theory, focusing not on generic loci in moduli space, but on neighborhoods

of points where extra massless degrees of freedom appear. Section 2 motivates our choice

of action by considering as an example the effective field theory resulting from a string

compactification on a Calabi-Yau 3 fold near a conifold point. Sections 3 and 4 study two

proposed mechanisms for stabilizing the moduli near these so-called extra species points,

or ESPs. The idea of classical trapping has been considered in a number of contexts; early

work in this direction includes [32] while some more recent examples are gases of wrapped

strings and branes (see [33] and references therein), black hole attractors [34], D-brane

systems [35], M-theory matrix models [36], flop transitions [37] and conifold transitions [38,

37, 39] studied in a cosmological background. In the case of quantum trapping, previous

works include [41 – 45]. In [41, 46] trapping is used to study trapped inflation and in the

latter trapped quintessence. Here, in the conifold context, we go further than previous

studies by taking account of both classical and quantum considerations, and of prime

importance, establishing that the moduli systems we consider exhibit chaotic dynamics.

Chaotic moduli evolution is something that had previously been suggested for moduli

dynamics in flat spacetime; we use the Poincaré ‘surface of section’ technique to put this

idea on a firm footing. Surprisingly, it turns out that an understanding of the chaos that

appears in the Minkowski case is crucial to interpreting the dynamics when Hubble friction

from the gravitational background is included. Specifically, we find the role of Hubble

1It is worth keeping in mind that the landscape is not an established feature of string theory. A large

number of apparently consistent vacuum solutions have been constructed, but their consistency has not

been demonstrated beyond doubt, and there remain worries about whether they should be regarded as

separate vacua of a single theory. [25]
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friction in classical moduli trapping to be less effective than previously believed, and that

quantum particle production traps the moduli (or at least stabilizes their expectation

values) far more efficiently.

To facilitate a direct comparison with refs [38, 39], we work with a 5d anisotropic

background. Our qualitative conclusions remain the same in the 4d isotropic case.

2. String theory motivation

The low energy effective action we use in the remainder of this paper is relevant to many

moduli systems. In this section we outline one context in which it arises — a Calabi-Yau

compactification of M-theory.2 Readers primarily interested in the dynamics of the low

energy theory, can skip to the result, which is equation (2.10).

Our starting point is the low energy description of M-theory, which is the effective field

theory of 11d supergravity with action

S11 =
1

2κ2
11

(
∫

d11x
√−g11

[

R11 −
1

48
F 2

4

]

+
1

6

∫

A3 ∧ F4 ∧ F4

)

, (2.1)

where F4 is the four-form flux F4 = dA3, and κ2
11 = 8πG11 = 8πl9p, with G11 the eleven-

dimensional Newton’s constant and lp the Planck length. We want to consider compactifi-

cation to 5D on a Calabi-Yau (CY) 3-fold K with Ricci-flat metric gab. Following [38], we

will take the 11d metric to be of the form,

ds2 = −dt2 + a(t)2d~x2 + b(t)2dy2 + gab(z)dzadzb , (2.2)

where the spacetime coordinates are xµ = (t, x1, x2, x3, y) and the CY coordinates are

denoted by za.

Performing a Kaluza-Klein reduction to 5 dimensions and keeping only the massless

modes results in an N = 2 abelian gauge theory3 containing; (see e.g. [47])

1 gravity multiplet,

(eaµ, ψµI , Aµ), ( I = 1, 2 ) (2.3)

h1,1 − 1 vector multiplets,

(Ai
µ, λi

I , φ
i),

(

i = 1, . . . , (h(1,1) − 1)
)

(2.4)

and h2,1 + 1 neutral hypermultiplets,

(ζ ī, Aī
I)

(

ī = 1, . . . , 2(h(2,1) + 1)
)

(2.5)

where hi,j = dim H i,j
∂̄

(K) are the Hodge numbers of K. The scalar fields in these multiplets

parametrize the Kähler and complex structure moduli spaces of K controlling its size and

2The full derivation contains many technical details of little relevance here, but can be found in [38, 37,

39].
3Here we are using the language of 4D supersymmetry. In 5 dimensions, N = 2 is the minimal nontrivial

supersymmetry, and so is sometimes referred to as N = 1. The unambiguous statement is that there are 8

supercharges.
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shape. Since the gauge theory is abelian and none of the hypermultiplets are charged, the

potential for the scalars is exactly flat, which is just to say that they are moduli.

The above is not the full story, however, as the metric on the hypermultiplet moduli

space is geodesically incomplete,4 i.e. a classical scalar field can reach the boundary in finite

proper time. Originally this was seen as a problem5 because boundary points correspond

to singular configurations of K that arise when cycles on K shrink to zero volume. This

is potentially troubling because the geometrical singularity gives rise to various divergent

coefficients in the effective action. Type II string theory and M theory have a remarkable

way of resolving the issue [48, 49]. Briefly, the singularity in the action can be interpreted

as arising from incorrectly integrating out brane wrapping modes that are usually massive

(since their mass is proportional to the volume of the cycle they wrap), but become massless

at these special points in moduli space where cycles collapse to zero volume. Calculations

show that by including these new massless modes in the effective action, the physical

singularity is resolved. It is then natural to seek the explicit form for the low energy

effective action near such a geometrical singularity [38]. The crucial point for our purposes

is that the brane states are charged under some of the vector multiplets, so the modification

required to the 4D theory is to introduce some extra charged hypermultiplets.6 It then

follows from the extended supersymmetry that several of the scalars acquire potentials.

The reason is that the scalars in the charged hypermultiplet must couple to the scalars in

the vector multiplet corresponding to the charge they possess.

Unfortunately, little is known about the fully quantum corrected hypermultiplet met-

ric7 so it is not yet possible to write explicitly the 5D action corresponding to a compact-

ification of type II string theory on a given Calabi-Yau 3-fold K. The best we can do

at present is to note that N = 2 supersymmetry implies that the hypermultiplet metric

has holonomy group precisely Sp(nH) · Sp(1). Spaces admitting such metrics are termed

quaternion-Kähler, a somewhat confusing name since as manifolds they are quaternionic,

but not in general Kähler, or even complex. Locally symmetric spaces (i.e. Lie group quo-

tients G/H) admitting quaternion-Kähler metrics were studied by Wolf [51], who classified

them into a few (infinite) families. For these examples one can find analytic expressions for

the metric, but it is unknown whether any of them correspond to the moduli space that

would arise from a genuine Calabi-Yau compactification.

We will now outline the derivation of the full 5d effective theory including the additional

massless degrees of freedom. A more detailed discussion of the construction can be found

in [38] and [37]. There it was shown that one can pick the Wolf space U(nH ,2)
U(nH)×U(2) , and

truncate the action so that only two scalar fields are nonzero; one from a vector multiplet,

4The same is true of the vector multiplet moduli space, but we won’t discuss that case here.
5See for example the introduction of [48].
6Of course the dimension of the parameter space of the scalars will increase, so the hypermultiplet

‘moduli space’ metric will change as well. This change is necessarily nontrivial, since simply taking a

product of two quaternion-Kähler metrics does not result in another quaternion-Kähler metric.
7An indication of the current status of quantum corrections to hypermultiplet metrics can be found

in [50]
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and one from a charged hypermultiplet. The result is a nonlinear sigma model:

L 1√−g
= R(g) − 1

2
G(h)∂µq∂µq − 1

2
G(v)∂µr∂µr − V (r, q) , (2.6)

where R is the Ricci scalar of the 5d metric gµν , r, q are scalar fields parametrizing the

vector multiplets and hypermultiplets respectively. The metrics G(h) and G(v) are given

by:

G(h) =
2

(1 − 2q2)2
G(v) =

3(2 + r2)

(2 − 3r2)2
(2.7)

and the potential V (r, q) is found to be:

V (r, q) = (48π)2/3 r2q2

(1 − 2q2)(1 − 3/2r2)3/2
. (2.8)

The field r is one of the Kähler moduli, and can be thought of (at least when it takes

positive values) as measuring the size of some 2-cycle in the compact space K.8 The point

r = 0 therefore corresponds to a singular Calabi-Yau, and in this case the physics is still

sensible because of the M2-brane wrapping states which become massless.

Introducing the geodesic coordinates

φ =
1√
3
arctanh

(

r(r2 − 6)

(r2 + 2)3/2

)

, χ = arctanh(
√

2q), (2.9)

the action for the 5d effective theory becomes

S5 =
1

2κ2
5

∫

d5x
√−gR(g) −

∫

d5x
√−g

(

1

2
∂µφ∂µφ +

1

2
∂µχ∂µχ − V (φ, χ)

)

(2.10)

where κ2
5 = κ2

11V
−1
CY = 8πG5 with VCY the volume of the extra dimensions, G5 the 5D

Newton constant, the 5d Einstein frame metric is gµν , and the effective potential is given

by

V (φ, χ) =
1

2
g2φ2χ2 + higher order (2.11)

with the coupling g2 = 2
3(48π)2/3V −1

CY ≪ 1 in Planck units, since VCY ≫ l6p in order that

the SUGRA description is valid.

In [38], the model (2.6–2.8) was used to demonstrate the possibility of conifold tran-

sitions occurring dynamically.9 Such a transition amounts to moving between the two

vacuum branches: r = 0 and q = 0.10 An important insight gained from the numerical

8When r is negative, it can be thought of as the volume of a 2-cycle in a manifold related to K by a flop

transition.
9Dynamics near conifold transition points was also investigated in [52].

10The existence of two flat directions is not a generic property of singular Calabi-Yaus. Such a situation

arises only when there are nontrivial homology relations among the collapsed cycles [49]. A more typical

potential contains terms ∝ φ4, not divisible by φ2χ2.
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studies of [38] is that the qualitative behavior of the fields and the scale factor(s) doesn’t

depend on the precise form of the potential. In particular it was insensitive to terms higher

order than φ2χ2.11 We therefore expect that if we stay close to the origin, it is sufficient

to study the minimal potential with no higher order terms:

V (φ, χ) =
1

2
g2φ2χ2 (2.12)

The property of (2.10) of interest here is that the mass of one field depends on the

expectation value of another. This feature is not specific to conifold transitions, but arises

whenever new massless states appear in the spectrum. For instance, if the Heterotic string

is compactified on a torus at self-dual radius, a U(1)×U(1) subgroup of the gauge group is

enhanced to SU(2)× SU(2). Another example is a pair of closely separated D-branes. The

ground state of a string stretched between them has a mass proportional to the separation,

so as the branes coincide, unexcited strings starting and ending on different branes become

massless. A similar phenomenon occurs in the small instanton phase transition [40], and

as indicated in [41] there are many other examples.

Though the points in moduli space where (2.12) applies are numerous, they are consid-

erably fewer than the number of distinct vacua in the ‘landscape’. So effects that trap the

moduli near points like φ = χ = 0 may help to ameliorate the difficulties associated with

extracting predictions from string theory. We now examine some of the special dynamics

exhibited by motion in the potential (2.12), keeping in mind the problem of understanding

how the fields φ and χ acquire masses consistent with observations.

3. Classical moduli trapping

In this section we will think of (2.10) as a classical scalar field theory, minimally coupled

to gravity. The dynamics is governed by a potential and by Hubble friction due to the

expansion of the universe.12

As can be seen from figure 1, the φ2χ2 potential restricts the moduli to a region of their

parameter space consisting of two ‘arms’ (φ = 0 and χ = 0), and a central ‘stadium’.13

The effect of Hubble friction is that in an expanding universe, the scalar fields gradually

lose energy, so over time their motion is constrained to smaller and smaller values of

φ2χ2. A natural question, then, is whether these two trapping effects, the potential and

Hubble friction, are sufficient to mitigate the phenomenological obstacles mentioned in

the introduction? This question was studied in [39]; here we extend the analysis taking

particular care of the following two points.

First, a crucial issue is that there is an ambiguity in many discussions as to what is

meant by ‘trapping’ and ‘stabilization’. It is sometimes assumed that all that is required

11Here we mean terms higher order in both φ and χ, not for example φ2χ3 or χ6.
12Hubble friction is a somewhat misleading term. The force it refers to is proportional to the velocity of

the scalar field, so a better mechanical analogue is air resistance. The distinction is important, since the

fields cannot come to rest at a place where the slope of the potential is nonzero, as one might assume from

the analogy with friction.
13The terminology comes from [36].
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Figure 1: Two views of the potential V (φ, χ) = 1
2
g2φ2χ2. The vacuum branches (‘arms’) φ = 0 and

χ = 0, are thehorizontal and vertical axes. Following [36], we call the central region the ‘stadium’.

to be consistent with observations is for the motion of the moduli to slow to a stop. In

fact, one must also ensure that once they have come to rest, their couplings to matter are

very weak, or they have acquired large masses. It is the latter requirement we pursue here.

In other words, the eigenvalues of the Hessian of the potential must all be strictly positive

(and sufficiently large). For a potential V = φ2χ2, we have:

H =

(

∂2V
∂φ∂φ

∂2V
∂φ∂χ

∂2V
∂χ∂φ

∂2V
∂χ∂χ

)

=

(

2χ2 4φχ

4φχ 2φ2

)

(3.1)

Since detH = −12φ2χ2 vanishes for vacuum configurations, there is always one eigenvalue

identically equal to zero, and so the phenomenological constraints cannot be satisfied. This

is easily seen intuitively from figure 1. At any point on either vacuum branch there is a flat

direction the field can move in. The best one can do it seems, is to have Hubble friction

keep the moduli some way down one of the arms, where only one of them has a mass. We

will return to the viability of this option in section 3.3.

Second, we argue that the classical motion on the moduli space exhibits chaotic dy-

namics. As we will see, this implies that the classical stabilization found in previous works

is only a pseudo-stabilization that traps fields for a finite duration, after which they leave

the trapping region and continue their motion.

3.1 Motion without Hubble resistance

Before taking into account the effects of a cosmological background, it is instructive to

study the dynamics of (2.10) in Minkowski space. In this circumstance χ = 0, dφ
dt = const.

is a solution of the equations of motion, corresponding to constant velocity motion down

one of the vacuum branches. And clearly no matter how long one waits, φ will not return

– 7 –
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to the ‘stadium’ area near the origin. One might guess that the same is true of almost

straight trajectories where the fields move down one of the arms, but not quite along the

minimum of the potential. However, it turns out that any momentum in the χ direction,

no matter how small, is sufficient to return φ to the origin. This was argued in [36] as

follows. The equations of motion are:

φ̈ + (g2χ2)φ = 0 (3.2)

χ̈ + (g2φ2)χ = 0 (3.3)

where overdots denote derivatives with respect to time. If φ is large, and not moving very

fast, then χ is approximately a harmonic oscillator with frequency gφ. Following [36] we

split the energy into two components, one corresponding to motion down the arm, the

other to transverse oscillations:

Eφ =
1

2
φ̇2, Eχ =

1

2
χ̇2 +

1

2
g2φ2χ2 (3.4)

For any harmonic oscillator one can show that
〈

χ2
〉

= Eχ/g2φ2, and replacing χ2 by its

expectation value in (3.2) results in an effective potential:

φ̈ +
dVeff

dφ
= 0, Veff = Eχ log(φ) (3.5)

For any positive Eχ, Veff increases monotonically, thus returning φ to the origin.

3.2 Chaos

It has previously been noticed that the potential of figure 1 has some of the features

associated with chaos [39]. For example, slightly different initial conditions can result in

motion down different arms, and the effective logarithmic potential ensures that generically

there is crossing of trajectories. Also since the potential in the stadium region is negatively

curved, we can intuitively think of the resulting dynamics as a Newtonian approximation

to geodesic motion in a negatively curved space, which is chaotic by the theorem of Horne

and Moore [54]. The importance of these observations for the case of motion with Hubble

friction warrants a more concrete analysis of the appearance of chaos14 , which we now

perform using the Poincaré ‘surface of sections’ method. The result is that indeed we find

chaotic scattering in the stadium with almost regular motion in the arms.

Poincaré surface of sections — Visualizing chaos. The Poincaré surface of sections

(henceforth PSS) technique was developed by Birkhoff [57] and Poincaré [58], and has been

widely used in studies of chaotic dynamics. We will briefly review the idea of a PSS and then

apply the technique to the problem at hand: motion in the potential V (φ, χ) = 1
2g2φ2χ2.

The PSS is based on the idea that to observe chaotic behavior one need not examine

the motion through phase space in all its complexity. Instead one can pick a codimension

1 hyperplane in the phase space and mark each point that’s crossed by a phase space

trajectory. See figure 2 for a schematic representation of the PSS technique.

14Chaotic behavior in cosmologies with scalar fields that have similar potentials was studied in [55, 56]
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Figure 2: Schematic diagram of a Poincaré surface of section. The circles show the points where

the phase trajectory cuts the hyperplane. Since the hyperplane is oriented, one can distinguish such

points by the direction of the phase trajectory when it passes through. A PSS is a collection of

such points with the phase trajectory moving in a specified direction. So this diagram really shows

part of two PSS’s — corresponding to the solid and hollow circles.

It is a well known result of Kolmogorov [59], Arnold [60] and Moser [61] known as the

KAM theorem that if a Hamiltonian system is integrable, then motion is confined to a

torus in phase space. If the motion is bounded, then after a long time (many cuts through

the hyperplane), a PSS traces out a planar section of a torus. In our example, the phase

space is coordinatized by φ, χ, pφ, pχ, and is therefore 4 dimensional. By working on a fixed

energy shell we reduce to 3 dimensions by solving for pχ in terms of the other 3 coordinates

and the total energy E. A codimension 1 hyperplane is then a 2d space, and if the system

is integrable then the PSS is a smooth curve, i.e. a ‘toric section’.

We choose the hyperplane to be specified by the condition χ = 0, and then plot the

φ, pφ coordinates each time the trajectory pierces the χ = 0 slice in the pχ > 0 direction.

In this way we build up a plot of successive (φ, pφ) values. A smooth curve indicates the

absence of chaos. If on the other hand the system is not integrable, then we will see an

irregular pattern of points.

To develop an insight for the onset of chaos we consider the following potential which

is related to (2.12) by the addition of a control term σ(x2 + y2),

V (x, y) =
1

2
g2φ2χ2 + σ(φ2 + χ2) . (3.6)

For σ ≫ 1
2g2 the motion is manifestly not chaotic as the potential is separable. In fact

it turns out that σ ∼ g2 is sufficient to remove any indication of chaos from the PSS. To

illustrate this, we will start with σ = 1
2g2 = 10 and dial σ down relative to g2 so that we

can see the signature of chaos emerge. We can see this effect clearly by comparing figure 3

to figure 4, where σ has been reduced by a factor of 10.

One should note that the smooth curve typical of an integrable system need not be

an ellipse as in figure 3. Figure 5 illustrates alternatives. The case of interest to us

where σ is exactly zero is more intricate because there are exactly flat directions in the

potential. When the motion is far down one of the arms, we have seen that it is governed

approximately by a harmonic oscillator in one direction, and a logarithmic potential in

– 9 –
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Figure 3: Surface of sections for σ = 10, 1/2g2 = 10, and E = 20. The points trace out a smooth

curve.

Figure 4: Surface of sections for σ = 1, 1/2g2 = 10, and E = 20. Here the points fill out a region

of the φ, pφ plane, indicating chaotic dynamics.

the other. We therefore see orbits that are approximately regular for a while, before

degenerating into chaotic motion, as seen in figure 6. The almost regular orbits on the

outer shell of the “onion” in figures 6 represent the motion up an arm, which is always

very close to a regular orbit. The irregular pattern of points filling up the central region

indicates the chaotic nature of the motion in the stadium. Thus, though we may find

– 10 –
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Figure 5: Surface of sections for σ = 10, 1/2g2 = 10, and E = 20.0, for different initial conditions.

Figure 6: Surface of sections for σ = 0, g2 = 20, and E = 20 for multiple trajectories.

stabilisation in the stadium using further techniques, we cannot use initial conditions to

constrain exactly where in the stadium this stabilisation will occur.

The significance of the alternation of chaotic motion with approximately regular orbits

is that the trapping mechanism provided just by the potential is actually not effective in

stabilizing or trapping any of the moduli. There might be a period of time where the fields

are down one of the arms (so that one of them has a mass), but they will always return to

the central stadium region before shooting off down another perhaps different arm.

– 11 –
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Next we will look at how Hubble friction changes this situation. Since the energy is no

longer conserved once we turn on Hubble friction, a PSS analysis is no longer appropriate,

however what we’ve learned in the above section will prove useful in all that follows.

Specifically we will find that since the motion in the stadium is chaotic, even once the fields

have lost a significant amount of energy to Hubble friction, they will always eventually

scatter up an arm and it would thus require extremely special initial conditions to be

trapped on a regular orbit.

3.3 Motion including Hubble resistance

In an expanding universe, fields gradually lose energy. One might hope that consequently

the fields eventually stop at some point away from the origin, thus leaving one field with

a mass. We take the metric to be isotropic in 3 of the space dimensions and homogeneous

in all 4:

ds2 = −dt2 + a(t)2d~x2 + b(t)2d~y2 (3.7)

As noted in the introduction, we choose this spacetime so as to compare our results directly

with those of [37 – 39]. Taking the gravitational background into account, the equations of

motion become:

φ̈ + (3Ha + Hb) φ̇ + g2χ2φ = 0 (3.8)

χ̈ + (3Ha + Hb) χ̇ + g2φ2χ = 0 (3.9)

Ḣa + H2
a − HaHb +

2

3
κ2

5T = 0 (3.10)

Ḣb + H2
b − 2H2

a + HaHb +
2

3
κ2

5T = 0 (3.11)

where T = 1
2

(

φ̇2 + χ̇2
)

is the kinetic energy density of the fields. After some time, nu-

merical simulations like those shown in figure 7 suggest that the spacetime approaches a

power law solution:

ds2 = −dt2 + t2qd~x2 + t2q4dy2 (3.12)

for some constants q and q4. The energy density in the fields then satisfies:

ρ = 3H2
a + 3HaHb =

3q(q + q4)

t2
. (3.13)

We expect that averaged over a sufficient interval, the kinetic energy is some fixed

fraction of the total, though not necessarily 1/2 as for a harmonic oscillator. The velocity

of the fields is therefore ∼ √
ρ ∼ t−1, and the distance they have travelled ∼ log(t).

It follows that the fields move an infinite distance, and do not gradually approach any

particular point in the moduli space. Moreover, since the scattering in the stadium is

chaotic, after some time the fields will always eventually end up moving almost exactly

down an arm, so in this sense Hubble friction does not trap the fields.15

15Were the dynamics not chaotic, one can imagine the motion confined to a stable orbit in the stadium

which converges to the origin as the energy decreases.
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Figure 7: The scale factors as a function of time. After t ∼ 1000 Planck times the space-

time is well approximated by power law expansion. Initial conditions here are (φ, φ̇, χ, χ̇, a, ȧ, b) =

(0, 0.2, 0.2, 0, 1, 0.1, 1) and ḃ is determined by the Friedmann equation.

On the other hand, the effect of Hubble friction is to make the occasional sojourns

down the arms rarer and longer lasting. By the time of nucleosynthesis (t ∼ 1045 Planck

times), a typical journey down an arm may well last an extremely long time, so one might

hope that over the time-scales we are interested in, the fields are essentially still. However,

big bang nucleosynthesis (in particular the observed primordial Helium abundance) relies

on a variety of processes that take place roughly between t ∼ 1 sec, and t ∼ 3 mins, and

depend sensitively on the number of massless species of particle. The velocity of the moduli

goes like 1/t, so with an initial velocity v0, the distance in field space the moduli traverse

during BBN is ∼ v0 log(180) ∼ 5v0 in Planck units. Since the mass of χ say is gφ, we

expect that over this time large changes to the masses of χ and φ are possible despite the

slowing effect of Hubble friction. Put differently, for the change in mass to be less than a

GeV, the initial velocity must be fine tuned to v0 < 10−19. The effect of Hubble friction is

therefore still somewhat unpredictable.16

It is worth noting that simulations performed in [39] up to t ∼ 1000tPlanck suggest

16Even if the fields were effectively still over the course of BBN, there is no particular reason to believe

that at the relevant time they should be in any particular place, i.e. near the origin, or down an arm.
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Figure 8: χ vs. φ until t = 500 Planck times. Initial conditions here are (φ, φ̇, χ, χ̇, a, ȧ, b) =

(0,−0.2, 0.65, 0, 1, 1.1, 1) and ḃ is determined by the Friedmann equation. The dotted line is the

equipotential corresponding to the initial energy of the fields.
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Figure 9: χ vs. φ until t = 15000 Planck times. Initial conditions are as for figure 8.

that the fields eventually get trapped near the origin. However, running the simulations

for longer interval reveals that the apparent trapping at the origin can be misleading.

Figure 8 shows the evolution of φ and χ up to t = 500tPlanck, when it appears that they are

becoming trapped. Figure 9 shows the subsequent motion until t = 15000tPlanck. During

the intervening period the apparently stabilized field took a journey down the χ = 0 arm.

Figure 10 shows a different example of the same phenomenon, with the fields plotted against
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Figure 10: The fields φ and χ as functions of time. Looking only up to t ∼ 105 one might think

the fields were trapped at the origin. But then at t ∼ 2×105 φ starts to increase. Initial conditions

used here are: (φ, φ̇, χ, χ̇, a, ȧ, b) = (0, 0.2, 0.2, 0, 1, 0.3, 1) and ḃ is determined by the Friedmann

equation.

time. We can understand this as follows: with no Hubble friction, the fields are free to

explore the full phase space between the lines of equipotential determined by the energy of

the system. Once we turn Hubble friction on, the energy in the fields is no longer conserved

and the available phase space decreases with time. However, because the arms are exactly

flat it is always possible for the fields to be sent arbitrarily far down an arm. Since the

scattering is chaotic this eventually happens. The result is that instead of slowing the

chaotic motion to a halt, Hubble friction merely stretches the motion out onto longer and

longer timescales.

These conclusions change significantly if one allows corrections to the φ2χ2 potential.

If the corrections do not lift the vacua (i.e. the additional terms are of the form φmχn with

m and n both 6= 0) then we still expect the fields to move down the arms every now and

again, but there is no guarantee that they will return to the stadium. The derivation of the

restoring force from the effective potential (3.5) depends crucially on the quadratic nature

of V (φ, χ) .

If, on the other hand, a vacuum branch is lifted, say by the addition of a φ4 term,17

17This is precisely what one expects in the neighborhood of an arbitrary conifold point, i.e. one that is
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then Hubble friction indeed does have a trapping effect. Reduction in energy gradually

confines φ to a smaller and smaller region of field space, and as t → ∞ the energy vanishes,

so there is some definite value of φ that the field configuration approaches.

4. Quantum particle production

Beyond the classical dynamics discussed in the previous section, essential quantum mechan-

ical phenomena occur at ESPs. In particular, when a field is massless, on-shell excitations

are produced at arbitrarily small energy cost.

Particle production at ESPs has been studied previously in the context of preheating

models [62 – 66], and also in various string theory scenarios [67, 68, 41, 44, 69 – 71, 45].

But it is of interest here because it results in a potential which confines the fields near the

extra species point [41]. The rough idea is that as one of the fields becomes massless, a

burst of on-shell particles is produced. The mass of these particle increases if the fields

subsequently move away from the ESP, so energetics force the fields to stay nearby.18

For example, consider the potential (2.12), and for initial conditions take φ and χ

approximately homogeneous in space, positioned along one of the vacuum branches, and

moving towards the origin. For definiteness say χ = 0, φ > 0, and φ̇ < 0. The effective

mass of the χ particles is mχ = gφ(t) which vanishes as φ crosses the origin. So a burst of

on-shell χ particles is produced. Now φ can no longer move freely away from the origin since

conservation of energy places a restriction on how massive the incoherent χ excitations can

become. This results in a potential, trapping φ at the origin, which gets steeper as more

χ quanta are produced. Since there is a φ2χ2 interaction term, scattering of χ particles

results in excitations of the φ field as well, effectively driving both fields towards the origin.

The aim of this section is to study how particle production might change the conclu-

sions of the classical analysis of the previous sections. We use the same metric ansatz as

before:

ds2 = −dt2 + a(t)2
(

dx2
1 + dx2

2 + dx2
3

)

+ b(t)2dx2
4 (4.1)

not necessarily a transition point between two topologically different families of Calabi-Yaus.
18Particle production is not the only quantum modification to the classical motion. There are also cor-

rections to the kinetic terms and loop corrections to the potential (Coleman-Weinberg corrections). There

is however a set of circumstances in which particle production is the most important effect. It was shown

in [44] that for weak coupling (g2
≪ 1) the effect of on-shell production dominates over propagator correc-

tions from virtual scattering. This will be the case here as well, since the coupling g must be small to ensure

the validity of the SUGRA description. The Coleman-Weinberg potential requires a bit more care, since

after SUSY breaking loop corrections should be expected to play an important role. In [41] it was argued

that these corrections are subdominant because on-shell production always gives a positive contribution

for both bosons and fermions, whereas fermions running in loops will give an opposite contribution to the

effective potential from that of bosons. If SUSY breaking is soft, this implies that the induced potential

from on-shell production should dominate the effective potential relative to the contribution from loops.

However, a better understanding of the effects of SUSY breaking remains an important goal for string

cosmology.
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with stress tensor T µ
ν = diag(−ρ, p, p, p, p). And for simplicity we take the fields to be

moving along the χ = 0 arm initially. The equations of motion are then:

φ̈ + (3Ha + Hb) φ̇ = −V ′(φ) (4.2)

Ḣa + Ha (3Ha + Hb) =
κ2

5

3
(ρ − p) (4.3)

Ḣb + Hb (3Ha + Hb) =
κ2

5

3
(ρ − p) (4.4)

where Ha = ȧ/a and Hb = ḃ/b are the Hubble parameters. To study excitations of χ, we

substitute χ = χ(t) + δχ(t, ~x, y) into the χ equation of motion (3.9), which results in:

δχ̈ + (3Ha + Hb) δχ̇ −
(

1

a(t)2
∂2

~x +
1

b(t)2
∂2

y − g2φ(t)2
)

δχ = 0, (4.5)

A slightly modified Fourier transform gives a simple mode equation:

δχ =

∫

d3k dk4
χk(t)√

a3b
eik·~x+ik4y (4.6)

χ̈k + ω2
k(t)χk = 0 (4.7)

where the frequency ωk of the kth mode is:

ω2
k(t) =

~k2

a2
+

k2
4

b2
+ g2φ2(t) − 1

4

(

9H2
a + H2

b + 6HaHb + 6Ḣx + 2Ḣy

)

. (4.8)

To proceed we need to compute the contributions to the right hand sides of equations (4.2–

4.4) (i.e. V ′, ρ and p) resulting from a burst of particle production. This can be determined

from nκ, the number density of particles produced with physical momentum κ, in the

following way:

nχ =

∫

d4κ

(2π)4
nκ = number density in all modes (4.9)

ρχ =

∫

d4κ

(2π)4
ωκnκ (ωκ = ωk with (~k, k4) = (a~κ, bκ4)) (4.10)

To find the potential it is useful to recall the case with 2 fields: V = 1
2g2φ2χ2, and

approximate χ2 →
〈

χ2
〉

. For the incoherent χ oscillations associated with production of χ

particles, we have:

〈

χ2
〉

=
ρχ

g2φ2
≃ nχ

g|φ| (4.11)

since for slowly varying φ, χ is approximately a harmonic oscillator with frequency gφ. In

the last step we used ρχ ≃ gnχ|φ|, which amounts to approximating the frequency by the

contribution to it from the effective mass only.19 The derivative of the potential V ′(φ) is

19In other words, we assume ω2
k ≃ g2φ2 + f(k), and take f(k) to be small. This is a good approximation

because f(k) is suppressed by powers of time, and we expect the time of production t# to be ≫ tP because

natural initial field values are a distance ∼ 1 from the origin, but initial velocities must be ≪ 1 to justify

an effective field theory description.
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then given by:

V ′(φ) = g2
〈

χ2
〉

φ = gnχ
φ

|φ| (4.12)

Finally, the pressure p can be found by solving ρ̇ = −(3Ha + Hb)(ρ + p), and using the φ

equation of motion.

It is important to note that even if there is just a single production event, nχ is a

function of time, because the particles are diluted as the universe expands. Since nk is

appreciable only for k ≪ 1 in the regime where effective field theory is useful, the produced

excitations behave like dust:

nχ(t) = nχ(t#)
a3(t#)b(t#)

a3(t)b(t)
(4.13)

where t# is the time of production. The number density per mode nκ(t#) was calculated

for an isotropic background in [41], and the results generalize (as derived in the appendix)

to our 5d case as follows:20

nχ (t#) ∝ (gv#)2 (4.14)

ρ =
1

2
φ̇2 + ρχ =

1

2
φ̇2(t) + gnχ(t#)

a3(t#)b(t#)

a3(t)b(t)
|φ(t)| (4.15)

V ′(φ) = gnχ (t#)
a3(t#)b(t#)

a3(t)b(t)

φ(t)

|φ(t)| (4.16)

p =
1

2
φ̇2 (4.17)

where v# = dφ
dt |t=t# .

4.1 Numerical simulations and comparison with classical effects

Our aim now is to understand how production of on-shell excitations changes the results of

section 3.3. Rather than work with typical initial conditions, we consider the ‘worst case

scenario’ from the point of view of trapping, i.e. motion directly down one of the arms of the

potential (classically there is no trapping at all: φ(t) ∼ log(t)). Through this analysis, we

intend to set a lower bound on the efficiency of trapping. With this in mind we include only

a single particle production event, and do not alter the potential in subsequent crossings

of the origin.

More general initial conditions do not allow the fields to move arbitrarily far from the

origin. And it is argued in [41] that successive particle production events are enhanced by

parametric resonance since they take place in a bath of the particles already produced.

It is not easy to guess the net result of including particle production, since there are

several competing effects:

• Hubble friction slows down the motion of the fields

20In D + 1 dimensions: nχ ∝
R

∞

0
dkkD−1 exp

“

−γ k2

gv#

”

∝ (gv#)
D

2 , where γ is a number of order 1
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Figure 11: Evolution of φ with time for typical initial conditions.

• The expanding background dilutes the produced particles thus reducing the slope of

the induced potential.

• The particles backreact on the background

In [41] the first two of these effects were taken into account, but the scale factor was

assumed to be a power of time. Here we include all three effects. For typical initial

conditions (with either a 4d or a 5d background), we find solutions like those in figure 11.

A plot of log(φ) against log(t) (figure 12) reveals a power law decrease in the amplitude of

φ oscillations, suggesting that after φ is restricted to an ever-decreasing range of values, it

approaches 0 like a negative power of t as t → ∞. Since this is a lower bound on trapping

efficiency, we expect that motion with generic initial conditions (not along an arm of the

potential) has the same features. This is to be contrasted with the classical situation of

figure 10, where the fields are not contained in an envelope with monotonically decreasing

amplitude. Quantum particle production thus provides a viable mechanism for trapping

some of the moduli at points where extra massless species appear.

5. Conclusion

We have considered the effects of additional light degrees of freedom on both the classical

and semi-classical dynamics. In the purely classical case we have illustrated the appearance

of chaotic scattering in the stadium region, and found that, somewhat surprisingly, vestiges

of the chaotic dynamics are important even when Hubble resistance is taken into account.

In particular, rather than slowing the fields to a halt, the effect of the expansion seems

to be to stretch the motion out on ever larger timescales. The point is that the chaotic
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Figure 12: Here the maxima of φ are plotted on a log-log scale, showing the power law decrease

of the φ amplitude.

dynamics ensures that the weakest link in the stabilization mechanism will, sooner or later,

be probed. And because the potential contains flat directions, these loci form the weak

links and they allow fields to roll away from any would-be stabilization location. Moduli

stablization therefore seems unlikely to result from classical motion in the quartic φ2χ2

potential. Higher order corrections may change this conclusion significantly, but the end

result (i.e. where the fields finally rest) will still depend sensitively on initial conditions if

the corrections do not lift the flat directions.

These caveats about stabilization do not apply once the effects of quantum particle

production are taken into account. The amplitude of the expectation values of the fields

decreases like a power of time. Though we only simulated the effect for the φ field, once

incoherent χ excitations are present, the χ2φ2 term allows scattering to produce φ particles

also, which produces a potential for χ similar to that for φ.

An important problem that remains is to consider additional quantum effects. In

this semi-classical analysis we have only focused on on-shell particle production. However,

understanding propagator and loop corrections in the absence of supersymmetry is a vital

next step.

One obstacle to using the above framework to stabilize moduli is that in the known

models whose low energy theory includes a piece of the form (2.10), only a proper subset

of the moduli possess interaction terms of the type required. For example in a Calabi-Yau

compactification of M-theory, if we approach the conifold point by blowing down 2-spheres,

then in general only the Kähler moduli will couple to the brane wrapping modes. Separate

considerations, such as the inclusion of p-form flux windings or nonperturbative effects like

gaugino condensation, are still needed to produce a phenomenologically acceptable theory.
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One may also wonder whether the linear potential resulting from particle production

really solves the phenomenological problems mentioned in the introduction, since it is not

a mass term. However, the concept of particle number is only well defined far away from

the time when φ crosses the origin, so it seems likely that the sharp cusp in the potential

is smoothed out. A large mass term is then present, but large interactions also.

Finally, it is important to note that the potential arising from particle production is

proportional to the number density of the excitations. So as the universe expands, the

trapping effect becomes weaker and weaker. Therefore, while it may help to ameliorate

the issues moduli create with primordial nucleosynthesis, late-time effects such as varying

couplings are still a problem.

The important case of particle production and dynamics in a contracting universe

has not been previously studied and will be the subject of a future paper [72]. It is not

immediately obvious what the effect of contraction will be and it may be of great relevance

to models of the universe that include a phase of contraction such as the cyclic universe [73].
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A. Particle production

A formal solution to the mode equation (4.7) is given by

χk(t) =
αk(t)

√

2ωk(t)
e−i

R t ωk(t′)dt′ +
βk(t)

√

2ωk(t)
ei

R t ωk(t′)dt′ . (A.1)

Normalizing χk by using the Klein-Gordon inner product is then equivalent to |αk(t)|2 −
|βk(t)|2 = 1, which can be used to write the equation of motion as

α̇k =
ω̇k

2ωk
e2i

R t ωk(t′)dt′βk

β̇k =
ω̇k

2ωk
e−2i

R t ωk(t′)dt′αk (A.2)

– 21 –



J
H
E
P
0
7
(
2
0
0
7
)
0
6
0

If initially we have βk ≪ 1 and αk ∼ 1 then at late times, the number density of particles

produced in the kth mode is nk = |βk|2. Assuming that βk is always small, the production

can be estimated by:

βk ∼
∫

dt
ω̇k

2ωk
e−2i

R t ωk(t′)dt′ (A.3)

We assumed earlier that the particle production happens in a short burst as φ crosses the

origin. To justify this approximation, note that the integrand of (A.3) is only significant

when ω̇k ≪ ωk, or in terms of dimensionless quantities when:

ω̇k

ω2
k

& 1 . (A.4)

To get an idea of how ω̇k

ω2
k

behaves, consider the following analytic solution of the equations

of motion (4.2–4.4):

φ(t) = v#t# log

(

t

t#

)

(A.5)

Ha(t) =
q

t
(A.6)

Hb(t) =
1 − 3q

t
(A.7)

which results in the following mode frequencies:

ω2
k(t) =

~k2

t2q
+

k2
4

t2(1−3q)
+

1

4t2
+ g2v2

#t2#

[

log

(

t

t#

)]2

(A.8)

A natural initial field value is φ ∼ 1, while v# ≪ 1 in order that an effective field theory

description is appropriate. It follows that the time t# when φ = 0 is large. Figure 13 shows

a plot of ω̇/ω2 for typical values of g,v# and t#, from which one can see that indeed a burst

of particle production does occur at t = t#. Less obvious is that ω̇/ω2 is large near t = 0

as well. This particle production is due to the expansion of the spacetime (essentially the

1/4t2 term in (A.8)) rather than time dependence of φ. Here we will only calculate the

effect of the latter, i.e. production at t ≃ t#.

For a general solution, the mode frequencies are:

ω2
k(t) =

~k2

a2
+

k2
4

b2
+ g2φ2(t) − 1

4

(

9H2
a + H2

b + 6HaHb + 6Ḣx + 2Ḣy

)

(4.8)

and neglecting the gravitational terms (since t# ≫ tPlanck) gives:

ω2
k(t) ≈

~k2

a(t)2
+

k2
4

b(t)2
+ g2φ2(t) (A.9)

We now estimate the integral (A.3) following the method of [74]. Note first that the

integral is dominated by times when ω is small. By allowing t to take complex values, one

can take advantage of the analytic structure of ωk to compute the integral. In particular,
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Figure 13: The non-adiabatic parameter ω̇/ω2 for very long wavelength modes (plotted here for

k = 0). The other parameters are t# = 105 and gv# = 10−11, consistent with the effective field

theory approximation. The sharpness of the peak increases with t#, and is independent of the

choice of Kasner parameter q.

one can deform the contour of integration so as to pass near a zero of ωk, located at a

(necessarily complex) time t# whose real part is close to t#. Since ωk is real for real values

of t, the zeros come in pairs related by complex conjugation, and from the single-valuedness

of ω2
k, we see that t# and t̄# are the branch points of a square-root branch cut, which for

convenience we take to pass through i∞ rather than along the real axis. The idea is that we

will approximate βk by integrating around an small arc near t# that interpolates between

the two steepest descent paths, as in figure 14.

On this path we can expand ωk in a Taylor series around t∗ whose terms are half-integral

powers because of the branch point. In general, if f(x) is analytic in a neighborhood of

x = 0 and f(0) = 0, then we have:

√

f(x) =
1

√

f ′(0)

[

f ′(0)x1/2 +
1

4
f ′′(0)x3/2 +

1

4

(

1

3
f ′′′(0) − 1

8

f ′′(0)2

f ′(0)

)

x5/2 + . . .

]

(A.10)

The frequency therefore becomes:

ωk(t) =

[

√

−2
k2

a(t∗)2
Ha(t∗) − 2

k2
4

b(t∗)2
Hb(t∗) + 2g2φ(t∗)φ̇(t∗)

]

(t − t∗)
1/2 + O(t − t∗)

3/2

=
√

f(t∗)(t − t∗)
1/2 + O(t − t∗)

3/2 (A.11)

and integrating with respect to time:
∫ t

0
ωk(t

′)dt′ =

∫ t∗

0
ωk(t

′)dt′ +
2

3

√

f(t∗)(t − t∗)
3/2 + . . . (A.12)
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Figure 14: The deformed contour for evaluating βk. The arc near t∗ is the only part of the integral

we evaluate.

Substituting the above expressions into equation (A.3), one finds:

βk = e−2i
R t∗
0

ωk(t′)dt′
(

1

4

∫

C

dδ

δ
e

−4i
3

√
f(t∗)δ3/2

)

(A.13)

where δ = t − t∗ the C denotes the red arc in figure 14 interpolating between the two

steepest descent contours. The bracketed integral can be performed by a change of variables

µ = 4
3 i

√

f(t∗)δ3/2 which (see [74]) closes the contour C to a loop as well as simplifying the

exponential. The result is:

βk =
iπ

3
exp

(

−2i

∫ t#

−∞
ωk(t

′)dt′
)

exp

(

−2i

∫ t∗

t#

ωk(t
′)dt′

)

(A.14)

The first integral is real, contributing only a phase to the exponential which will cancel in

|βk|2. The second integral can be approximated
∫ t∗
t#

ωk(t
′)dt′ ∼ iγ

2 Im(t∗)ωk(t#), where γ is

a constant of order 1. The result is:

|βk|2 =

(

π

3

)2

eγIm(t∗)ωk(t#). (A.15)

Thus, to calculate the leading contribution to particle production it is sufficient to identify

the real and imaginary contributions to the zeros of ωk.
21 For small k, we expect t∗ − t#

to be small, so the following approximation is useful:

0 = ω2
k(t∗) ≃ c0 + c1(t∗ − t#) + c2(t∗ − t#)2 (A.16)

21We only get a sensible answer by deforming the contour into the lower half plane. This can be shown [74]

to be a consequence of choosing the positive square root in (A.11).
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where the Taylor coefficients are:

c0 =
k2

a2(t#)
+

k2
4

b2(t#)
(A.17)

c1 = −2
k2

a2(t#)
Ha(t#) − 2

k2
4

b2(t#)
Hb(t#) (A.18)

c2 = O(k2) + g2φ̇2(t#) (A.19)

Here we have used φ(t#) = 0. We can now find the zeros of ωk by solving (A.16). As

argued in more detail in [74], we are interested in the zero in the lower half plane:

t∗ =
−c1 −

√

c2
1 − 4c0c2

2c2
(A.20)

For small k (so that terms O(k4) can be neglected), the comoving number density per

mode is:

nk(t#) ≃
(π

3

)2
eγIm(t∗)ωk(t#) ≃

(π

3

)2
e−γc0/

√
c2 (A.21)

≃
(π

3

)2
exp

(

−γ
1

gv#

[

k2

a2(t#)
+

k2
4

b2(t#)

])

(A.22)

The total number density (in physical rather than comoving coordinates) in all modes is

then found by integrating:

nχ(t#) =
1

a3(t#)b(t#)

(π

3

)2
∫

d4k

(2π)4
exp

(

−γ
1

gv#

[

k2

a2(t#)
+

k2
4

b2(t#)

])

=
g2v2

#

144γ2
. (A.23)
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